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Abstract
Miller’s rule is an empirical relation between the nonlinear and linear optical coefficients that
applies to a large class of materials but has only been rigorously derived for the classical
Lorentz model with a weak anharmonic perturbation. In this work, we extend the proof and
present a detailed derivation of Miller’s rule for an equivalent quantum-mechanical anharmonic
oscillator. For this purpose, the classical concept of velocity-dependent damping inherent to the
Lorentz model is replaced by an adiabatic switch-on of the external electric field, which allows a
unified treatment of the classical and quantum-mechanical systems using identical potentials
and fields. Although the dynamics of the resulting charge oscillations, and hence the induced
polarizations, deviate due to the finite zero-point motion in the quantum-mechanical framework,
we find that Miller’s rule is nevertheless identical in both cases up to terms of first order in the
anharmonicity. With a view to practical applications, especially in the context of ab initio
calculations for the optical response where adiabatically switched-on fields are widely assumed,
we demonstrate that a correct treatment of finite broadening parameters is essential to avoid
spurious errors that may falsely suggest a violation of Miller’s rule, and we illustrate this point
by means of a numerical example.

Keywords: Miller’s rule, nonlinear susceptibility, second-harmonic generation,
quantum anharmonic oscillator

1. Introduction

Nonlinear optical effects comprise a large number of phys-
ical phenomena that arise because the response of atoms,
molecules, or solids is, in general, not simply proportional
to the incident electric field [1]. Instead, the induced polar-
ization features additional Fourier components with other fre-
quencies than the external perturbation. The resulting charge
oscillations in turn radiate electromagnetic waves, effectively
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converting part of the incident light to different frequencies.
The most prominent manifestation is harmonic generation,
where two or more low-energy photons from a monochro-
matic field are converted into one high-energy photon with an
integer multiple of the original frequency, in a parametric pro-
cess that preserves both energy and momentum [2, 3]. Further
nonlinearities include the optical Kerr effect and two-photon
absorption; the latter is an example of a nonparametric pro-
cess that changes the quantum state of the sample due to the
energy absorption and the resulting electronic excitation. The
various forms of optical nonlinearities are exploited in many
technological applications, such as tunable coherent light
sources [4], electro-optic modulators [5], ultrafast all-optical
switching [6] and signal processing [7], as well as advanced
imaging techniques for chemical [8] and biological [9]
systems.
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In order to select the optimal combination of materials and
wavelengths for a given photonic application and to further
maximize the desired properties by tuning the sample geo-
metry, external doping, or other factors, computer simulations
are an effective tool [10, 11]. While linear optical spectra
can be calculated with high accuracy from the Bethe–Salpeter
equation [12], which includes excitonic and local-field effects
without any empirical parameters, a comparable treatment of
the nonlinear response is usually prohibitive due to the much
higher numerical cost [13]. Despite some theoretical progress
[14–17], most first-principles simulations are hence performed
at a much simpler level, the independent-particle approxim-
ation, which ignores excitonic contributions as well as local-
field effects altogether [18–25]. As an alternative, Miller’s rule
[26] provides an empirical relation between the linear and non-
linear optical coefficients of materials, which can be used to
circumvent the explicit numerical computation of higher-order
susceptibilities in the first place.

The historical origin ofMiller’s rule, first published in 1964
[26], was the observation that the ratio between the nonlin-
ear coefficients for second-harmonic generation, measured at
a fixed laser wavelength of 1.06µm, and a certain product of
first-order susceptibilities turned out very similar for a set of
eleven inorganic crystalline solids, although the coefficients
themselves varied by several orders of magnitude. Soon after-
wards, measurements over a larger spectral range confirmed
that this ratio is nearly independent of frequency [27], and
similar relations were found for higher-order nonlinear coef-
ficients, such as third-harmonic generation [28]. By now, it is
established that Miller’s rule extends to materials as diverse as
organic molecular crystals [29], ferroelectrics [30], and chal-
cogenide glasses [31], while optical metamaterials were found
to exhibit more significant deviations [32, 33].

Due to the enormous simplification that results from deriv-
ing nonlinear optical spectra purely on the basis of easily
obtainable linear susceptibilities, Miller’s rule is now widely
used in practical materials research, not only to avoid the
expensive computation of higher-order susceptibilities in the-
oretical simulations [34–36], but also to sidestep technically
challenging direct measurements of the nonlinear coefficients
in experimental studies and to predict them instead from the
linear optical absorption or refractive index [37–39]. Finally,
Miller’s rule underlies common software packages for mod-
elling the nonlinear optical materials properties [40, 41] and
plays an important role in modern computer-aided materials
discovery, because it facilitates a simple quantitative estimate
of various nonlinearities from a small set of tabulated results
for the linear optical functions [42].

In light of the broad scope of applications and obvious prac-
tical importance of Miller’s empirical rule, a proper theoret-
ical justification would be highly desirable, but there has been
little progress so far despite substantial efforts. It has long
been known that Miller’s rule can be rigorously derived for the
classical Lorentz model [43], which describes the electrons as
independent point particles in a confining potential well with
a periodic driving force and velocity-dependent damping. As
there are no nonlinearities in a purely harmonic confinement,
the derivation involves a weak anharmonic perturbation and

considers only terms of first order in the anharmonicity; all
higher orders are ignored. In this form, it is featured in per-
tinent textbooks [1] and can be generalized to any order of
the nonlinearity [44]. Although it is widely believed that
Miller’s rule applies equally to quantum-mechanical systems,
an analogous mathematical derivation is not straightforward,
because the Lorentz model contains some distinctly classical
concepts, such as the velocity-dependent damping term, that
have no quantum-mechanical counterpart. As a consequence,
no full proof has been reported so far, as previous treatments
provided few details and consistently ignored the damping
[45]. However, this simplification gives rise to a purely real
dielectric function, which fails to describe absorption and is
thus unsuitable for practical use in optics research. Attempts to
derive Miller’s rule for realistic interacting electron systems in
solids require even more drastic uncontrolled approximations
[46]. On the other hand, despite the lack of a proper math-
ematical justification, the results for real materials are often
analyzed based on the premises of the Lorentz model. For
example, a recent theoretical study of the polaronic enhance-
ment of second-harmonic generation in lithium niobate inter-
preted the large violation of Miller’s rule for some elements
of the calculated nonlinear susceptibility as evidence that the
polaron charge in these defect configurations is trapped in a
strongly anharmonic double-well potential instead of a weakly
anharmonic potential well as assumed in the classical Lorentz
model, although the shape could not be verified directly [47].

In order to provide a better theoretical foundation for
Miller’s rule, we go beyond earlier studies and present a
detailed derivation for the quantum-mechanical anharmonic
oscillator in this work, taking the complex nature of the lin-
ear and nonlinear susceptibilities fully into account. Following
the established treatment of the Lorentz model, we only focus
on terms of first order in the anharmonicity. A key feature of
our approach is that we do not treat the imaginary part as ori-
ginating from a classical damping force, but from the adia-
batic switch-on of the external electric field, in line with its
usual role in ab initio electronic-structure calculations [48].
This modification obviates the need for classical particle velo-
cities and allows us to treat classical and quantum-mechanical
systems on the same footing. Despite inherent deviations in the
induced dynamic polarization, we find that the mathematical
expression for Miller’s rule is nevertheless identical in both
cases up to terms of first order in the anharmonicity. With a
view to practical applications, another important result is that
the linear susceptibilities that enter Miller’s rule must be eval-
uated not only at different frequencies, as had already been
known, but also with different broadening parameters in this
scenario.

This paper is organized as follows. In section 2, we explain
the theoretical background; besides the definition of linear and
nonlinear susceptibilities, we briefly present the known results
for the classical Lorentz model together with the previously
established expressions forMiller’s rule. In section 3, we intro-
duce the modified model used in this work and derive perturb-
ative solutions up to first order in the anharmonicity both in a
classical and a quantum-mechanical framework. On this basis,
we then compare the resulting expressions for the dynamic
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polarizations and discuss the implications for Miller’s rule.
The importance of treating the broadening parameters cor-
rectly is further illustrated by means of a numerical example.
Finally, we summarize our conclusions in section 4.

2. Theoretical background

In this section, we introduce key quantities and establish the
notation used in this work. We start with the definition of the
linear and nonlinear susceptibilities and then briefly review the
results for the classical Lorentz model.

2.1. Linear and nonlinear susceptibilities

An external electric field causes a displacement of charge car-
riers inside a sample and thus gives rise to polarization. The
induced polarization density, which corresponds to the dens-
ity of the induced electric dipole moments, can be expanded
by orders of the external field Eα(r, t) according to

Pα (r, t) =
∑
j⩾1

P( j)
α (r, t) , (1)

where the index α labels the spatial dimensions and each term
has the form [1]

P( j)
α (r, t) = ε0

∑
α1,...,αj

ˆ
dt1 . . .dtj

ˆ
d3r1 . . .d

3rj

×χ( j)
αα1...αj

(r,r1, . . . ,rj; t− t1, . . . , t− tj)

×Eα1 (r1, t1) . . .Eαj (rj, tj) . (2)

In general, the polarization density at the time t depends on the
electric field at all earlier times ti ⩽ t, because the response is
not instantaneous. Furthermore, the convolution in real space
reflects the fact that charge rearrangements elsewhere in the
system influence the effective local field at the point r due
to the long-range Coulomb interaction. The key quantity that
determines the response of the system is the microscopic
dynamic susceptibility χ( j), which is written as a tensor of
rank j+ 1. The first-order susceptibility χ(1) is called linear,
because it yields a contribution directly proportional to the
external electric field, whereas all higher-order susceptibilit-
ies are called nonlinear. To respect causality, the susceptibility
in (2) can only be nonzero if all of the time differences t− ti are
nonnegative. The symbol ε0 denotes the vacuum permittivity.

If the wavelength of the incident electric field is much larger
than the extent of the sample, as is typically the case in optical
experiments with infrared or visible light, then the spatial vari-
ation can be neglected, and the electric field may be approxim-
ated asEα(r, t) = Eα(t). In this case, the total integrated dipole
moment is given by

P( j)
α (t) =

ˆ
d3rP( j)

α (r, t)

= ε0
∑

α1,...,αj

ˆ
dt1 . . .dtjχ

( j)
αα1...αj

(t− t1, . . . , t− tj)

×Eα1 (t1) . . .Eαj (tj) , (3)

where the components of the macroscopic susceptibility
tensor

χ( j)
αα1...αj

(t− t1, . . . , t− tj)

=

ˆ
d3r
ˆ
d3r1 . . .d

3rjχ
( j)
αα1...αj

(r,r1, . . . ,rj; t− t1, . . . , t− tj)

(4)

can be interpreted as multidimensional Fourier transforms
with the wavevector k= 0. Furthermore, if the electric field
can be represented as a sum of discrete frequency contribu-
tions according to

Eα (t) =
∑
ω

Êα (ω)e
−iωt , (5)

then (3) simplifies to

P( j)
α (t)

= ε0
∑

ω1,...,ωj

∑
α1,...,αj

χ( j)
αα1...αj

(ω1 + . . .+ωj;ω1, . . . ,ωj)

× Êα1 (ω1) . . . Êαj (ωj)e
−i(ω1+...+ωj)t , (6)

where the Fourier transform of the macroscopic susceptibility
from real times to frequencies is defined as

χ( j)
αα1...αj

(ω1 + . . .+ωj;ω1, . . . ,ωj)

=

ˆ
dτ1 . . .dτjχ

( j)
αα1...αj

(τ1, . . . , τj)e
iω1τ1 . . .eiωjτj (7)

with τi = t− ti. Therefore, the induced polarization is also a
sum of discrete frequency components

P( j)
α (t) =

∑
ω̃

P̂( j)
α (ω̃)e−iω̃t . (8)

The oscillations of the linear part are always identical to the
external electric field, but the nonlinear part exhibits a larger
spectrum with additional frequency contributions and corres-
ponding amplitudes

P̂( j)
α (ω̃)

= ε0
∑

(ω1,...,ωj)

∑
α1,...,αj

χ( j)
αα1...αj

(ω̃;ω1, . . . ,ωj)

× Êα1 (ω1) . . . Êαj (ωj) , (9)

where the first summation is over all ordered tuples with
the fixed sum ω1 + . . .+ωj = ω̃. Depending on the sign of
the individual terms, this phenomenon is called either sum-
frequency or difference-frequency generation.

In the special case of a monochromatic field with frequency
ω, the complex Fourier series

Eα (t) = Êα (ω)e
−iωt+ Êα (−ω)eiωt (10)

contains only two terms corresponding to +ω and −ω. For
a real-valued physical quantity, the Fourier coefficients must
satisfy Êα(−ω) = Ê∗

α(ω). The most prominent nonlinear phe-
nomena in this scenario, which we also examine in this
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work, are second-harmonic and third-harmonic generation.
The former originates from

P̂(2)
α (2ω) = ε0

∑
α1,α2

χ(2)
αα1α2

(2ω;ω,ω) Êα1 (ω) Êα2 (ω) (11)

but is only observable in noncentrosymmetric samples, while
the latter originates from

P̂(3)
α (3ω)

= ε0
∑

α1,α2,α3

χ(3)
αα1α2α3

(3ω;ω,ω,ω) Êα1 (ω) Êα2 (ω) Êα3 (ω)

(12)

and occurs in all systems. Another notable second-order
process is optical rectification, where an oscillating, time-
dependent electric field gives rise to a constant, time-
independent polarization described by

P̂(2)
α (0) = ε0

∑
α1,α2

(
χ(2)
αα1α2

(0;ω,−ω)+χ(2)
αα2α1

(0;−ω,ω)
)

× Êα1 (ω) Ê
∗
α2
(ω) . (13)

In line with established conventions, we use the short-hand
notation χ( j)

αα1...αj(ω1 + . . .+ωj) in the following instead of

χ
( j)
αα1...αj(ω1 + . . .+ωj;ω1, . . . ,ωj), if there is no ambiguity.

2.2. Classical Lorentz model

The Lorentz model is a phenomenological model that predates
quantum mechanics and treats electrons in a material as clas-
sical particles bound to stationary atomic nuclei by springs,
together with a damper to ensure a finite response at the res-
onance frequency. The restoring force must include an anhar-
monic contribution in order to describe optical nonlinearities.
Under these assumptions, the response of electrons with mass
m and charge −e0 to a time-dependent electric field E(t) in
one spatial dimension is determined by the classical equation
of motion

m
d2

dt2
x(t) =−m

τ

d
dt
x(t)−mω2

0x(t)−mβ2x(t)
2

−mβ3x(t)
3 − e0E(t) , (14)

where ω0 is the resonance frequency of the harmonic oscilla-
tion and τ is the relaxation time. The external electric field is
assumed to be monochromatic and can be written as

E(t) = Ê(ω)e−iωt+ c.c. , (15)

where c.c. denotes the complex conjugate.
For a weak anharmonicity, the equation of motion (14) can

be solved by perturbation theory. For this purpose, the dis-
placement is expanded by orders of the parameters β2, β3

according to

x(t) =
∑
n⩾0

xn (t) . (16)

The zeroth-order term corresponds to a damped driven har-
monic oscillator and has the form

x0 (t) = x̂0 (ω)e
−iωt+ c.c. (17)

with

x̂0 (ω) =−e0
m

(
1

ω2
0 −ω2 − iω/τ

)
Ê(ω) . (18)

For a pure harmonic potential, the period of the electronic
oscillation is hence identical to the external perturbation, and
the amplitude of the displacement is proportional to the elec-
tric field. In contrast, the first-order term

x1 (t) =
x̂1 (0)
2

+ x̂1 (2ω)e
−i2ωt+ x̂1 (ω)e

−iωt

+ x̂1 (3ω)e
−i3ωt+ c.c. (19)

contains a number of additional discrete frequency compon-
ents, whose Fourier coefficients are given by

x̂1 (0) =−2β2
|x̂0 (ω) |2

ω2
0

(20)

x̂1 (2ω) =−β2
x̂0 (ω)

2

ω2
0 − 4ω2 − i2ω/τ

(21)

x̂1 (ω) =−3β3
x̂0 (ω) |x̂0 (ω) |2

ω2
0 −ω2 − iω/τ

(22)

x̂1 (3ω) =−β3
x̂0 (ω)

3

ω2
0 − 9ω2 − i3ω/τ

. (23)

As x̂0(ω)∝ Ê(ω) according to (18), the components with fre-
quencies 0 and 2ω are of second order in the external electric
field, while those with ω and 3ω are of third order, although
all are linear in the anharmonicity parameter β2 or β3. Terms
of second or higher order in the anharmonicity parameters are
not considered in this work.

2.3. Miller’s rule for the Lorentz model

For an ensemble ofN independent electrons, each carrying the
charge −e0, the total polarization equals

P(t) =−Ne0x(t) . (24)

The linear part stems exclusively from the zeroth-order term
x0(t), the only component of the displacement directly propor-
tional to the electric field. By inserting the expression (18) into
the Fourier representation

P̂(1) (ω) =−Ne0x̂0 (ω) = ε0χ
(1) (ω) Ê(ω) , (25)

we obtain the explicit formula

χ(1) (ω) =
Ne20
ε0m

1
ω2
0 −ω2 − iω/τ

(26)
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for the linear susceptibility. Likewise, by exploiting (25) in
order to substitute x̂0(ω) in (20)–(23), the higher-order non-
linear susceptibilities can be written in terms of the linear sus-
ceptibility as

χ(2) (0) = β2
m
e0

(
− ε0
Ne0

)2

χ(1) (0) |χ(1) (ω) |2 (27)

χ(2) (2ω) = β2
m
e0

(
− ε0
Ne0

)2

χ(1) (2ω)χ(1) (ω)
2 (28)

χ(3) (ω) = β3
m
e0

(
− ε0
Ne0

)3

χ(1) (ω)
2 |χ(1) (ω) |2 (29)

χ(3) (3ω) = β3
m
e0

(
− ε0
Ne0

)3

χ(1) (3ω)χ(1) (ω)
3
. (30)

These relations are the essence of Miller’s rule, which, in its
original empirical formulation, states that the ratio

δ(2) (2ω) =
χ(2) (2ω)

χ(1) (2ω)χ(1) (ω)
2 (31)

between the nonlinear susceptibility χ(2)(2ω) for second-
harmonic generation and the product χ(1)(2ω)χ(1)(ω)2 of
three first-order susceptibilities evaluated at different frequen-
cies is essentially independent of ω and, moreover, varies little
between different materials. For the Lorentz model, the above
results confirm that

δ(2) (2ω) = β2
ε20m

N2e30
(32)

is a constant function, and Miller’s rule is therefore satisfied
exactly in this case. Similar rules can be derived from (27)–
(30) for the other Fourier components of the nonlinear sus-
ceptibility, such as third-harmonic generation.

3. Results and discussion

Although the derivation of Miller’s rule for the classical
Lorentz model is straightforward, as shown in the previous
section, it remains unclear whether and how these results
can be generalized to quantum-mechanical systems. The prin-
cipal obstacle is that the imaginary part of the susceptibil-
ity (26) vanishes unless the relaxation time τ is finite, but
the origin of this parameter within the Lorentz model is a
velocity-dependent friction force, a distinctly classical concept
with no quantum-mechanical analogue. On the other hand, the
susceptibility and the associated dielectric function become
unphysical if the scattering time is neglected, because a purely
real response function diverges at the resonance frequency
ω0 and fails to describe essential phenomena like the optical
absorption spectrum, which corresponds to the imaginary part
of the dielectric function, even at a qualitative level. In order
to overcome these problems, we propose a modified model
in this work, which avoids the classical notion of velocity-
dependent forces and instead treats the imaginary part of the

dielectric function in the same fashion as in modern quantum-
mechanical ab initio simulations. Although closely related to
the Lorentz model, it can hence be treated on the same foot-
ing in a classical and a quantum-mechanical framework and
thereby allows us to investigate the validity of Miller’s rule in
both cases. The model consists of independent electrons in an
anharmonic potential

V(x) =
mω2

0

2
x2 +

mβ2
3
x3 +

mβ3
4
x4 (33)

that includes a cubic and a quartic term, subject to an adiabat-
ically switched on monochromatic electric field

E(t) = Ê(ω)e−iωteγt+ c.c. (34)

with γ > 0, which gives rise to a time-dependent potential
energy+e0E(t)x. In contrast to classical physics, where meta-
stable states can well reside in local minima of unbounded
potentials, the quartic term in V(x) is necessary here to ensure
the existence of a proper quantum-mechanical ground state,
which requires the potential to be bounded from below. We
note that, in principle, it is possible to consider more gen-
eral switching functions, but nonadiabatic switching neces-
sarily involves different frequency components to achieve the
desired time dependence and thus implies additional non-
linearities due to complicated sum-frequency mixing. Such
processes are not considered in this work, which focuses
on harmonic generation. Furthermore, adiabatic switching is
ubiquitous in ab initio calculations, and the proper applic-
ation of Miller’s rule in this scenario is hence of special
concern.

3.1. Classical solution

The classical equation of motion for our model is

m
d2

dt2
x(t) =−mω2

0x(t)−mβ2x(t)
2 −mβ3x(t)

3 − e0E(t) ,

(35)

which differs from the Lorentz model (14) by the absence of
the damping term and the different time dependence of the
external electric field, now given by (34). Analogous to the
treatment in section 2.2, the equation of motion can be solved
by perturbation theory. For this purpose, the displacement x(t)
is expanded by powers of the parameters β2, β3 as in (16).
Inserting this expression into (35) and comparing terms of
equal order in the perturbation yields the set of equations

(
d2

dt2
+ω2

0

)
x0 (t) =−e0

m
E(t) (36)(

d2

dt2
+ω2

0

)
x1 (t) =−β2x0 (t)2 −β3x0 (t)

3
. (37)

5
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All terms of second and higher order in β2, β3 are again disreg-
arded. The zeroth-order differential equation (36) corresponds
to a driven harmonic oscillator with the solution

x0 (t) = x̂0 (ω)e
−iωteγt+ c.c. (38)

The resulting Fourier coefficient

x̂0 (ω) =−e0
m

(
1

ω2
0 − (ω+ iγ)2

)
Ê(ω) (39)

is very similar but not identical to (18). In particular, it can be
written exactly as the sum of two complex Lorentzian func-
tions, which is not true for the classical Lorentz model and
justified only as an approximation in the limit of large relaxa-
tion times. A comparison of the two expressions demonstrates
that the adiabatic parameter γ fulfills a similar mathematical
role as τ/2, generating an imaginary part even without clas-
sical velocity-dependent damping. After inserting x0(t) on the
right-hand side of (37), it is straightforward to confirm that the
ansatz

x1 (t) =

(
x̂1 (0)
2

+ x̂1 (2ω)e
−i2ωt

)
e2γt

+
(
x̂1 (ω)e

−iωt+ x̂1 (3ω)e
−i3ωt

)
e3γt+ c.c. (40)

solves the first-order differential equation with the complex
Fourier coefficients

x̂1 (0) =−2β2
|x̂0 (ω) |2

ω2
0 − (0+ i2γ)2

(41)

x̂1 (2ω) =−β2
x̂0 (ω)

2

ω2
0 − (2ω+ i2γ)2

(42)

x̂1 (ω) =−3β3
x̂0 (ω) |x̂0 (ω) |2

ω2
0 − (ω+ i3γ)2

(43)

x̂1 (3ω) =−β3
x̂0 (ω)

3

ω2
0 − (3ω+ i3γ)2

. (44)

3.2. Quantum-mechanical solution

The quantum-mechanical analogue to the classical equation
of motion is the Schrödinger equation. It determines the time
evolution of the wavefunction ψ(x, t), from which all observ-
able properties can be derived. The Schrödinger equation for
the system considered in this work has the form

ih̄
∂

∂t
ψ (x, t) =

(
H(0) (x, t)+H(1) (x)

)
ψ (x, t) (45)

with the time-dependent Hamiltonian of a driven harmonic
oscillator

H(0) (x, t) =− h̄2

2m
∂2

∂x2
+
mω2

0

2
x2 + e0E(t)x (46)

and the time-independent anharmonic part of the potential

H(1) (x) =
mβ2
3
x3 +

mβ3
4
x4 . (47)

Following the same approach as in the classical case, we
employ perturbation theory and expand the wavefunction by
orders of the parameters β2, β3 according to

ψ (x, t) =
∑
j⩾0

ψ( j) (x, t) . (48)

Inserting this expression into (45) and comparing the terms
in each order again yields a set of differential equations that
can be solved in succession to obtain the individual compon-
ents of the wavefunction. Although this strategy appears nat-
ural in light of the analogous classical solution, we note that
it is in fact highly unusual from a technical point of view:
Standard applications of time-dependent perturbation theory
in quantum mechanics assume a well-defined stationary ini-
tial state and then treat time-dependent external fields in a per-
turbative manner. In this case, the roles are reversed, however,
as we take the time-dependent Hamiltonian of the driven har-
monic oscillator H(0)(x, t) as the unperturbed system and the
time-independent anharmonic part of the potential H(1)(x) as
the perturbation. This causes some mathematical challenges
but has the advantage that it allows a nonperturbative treat-
ment of the external electric field without truncation at a finite
order.

3.2.1. Zeroth order: driven harmonic oscillator. The time-
dependent Schrödinger equation of a driven harmonic oscil-
lator in one dimension is

ih̄
∂

∂t
ψ(0) (x, t) = H(0) (x, t)ψ(0) (x, t) . (49)

Its exact analytic solution, first derived by Schrödinger [49],
involves a sequence of transformations that reduce it to a sim-
pler solvable form. In the first step, the coordinate system is
transformed by substituting x= y+ ζ(t), where ζ(t) initially
denotes an arbitrary time-dependent function. This defines a
new shifted wavefunction

ψ(0) (y+ ζ (t) , t) =: ψ̃ (y, t) . (50)

With this change of variables, the Schrödinger equation
becomes

ih̄
∂

∂t
ψ̃ (y, t) =

(
ih̄ζ̇ (t)

∂

∂y
− h̄2

2m
∂2

∂y2
+
mω2

0

2
(y+ ζ (t))2

+ e0E(t)(y+ ζ (t))

)
ψ̃ (y, t) , (51)

where the time derivative of the univariate function ζ(t) is
written concisely as ζ̇(t). In the second step, we apply the unit-
ary transformation

ψ̃ (y, t) =: eimyζ̇(t)/h̄ϕ(y, t) . (52)

6
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Inserting this expression into (51) and rearranging the result-
ing terms leads to

ih̄
∂

∂t
ϕ(y, t)

=

(
− h̄2

2m
∂2

∂y2
+
mω2

0

2
y2 +mω2

0yζ (t)+ e0E(t)y+myζ̈ (t)

− m
2
ζ̇ (t)2 +

mω2
0

2
ζ (t)2 + e0E(t)ζ (t)

)
ϕ(y, t) . (53)

If ζ(t) is now chosen specifically to obey the classical zeroth-
order equation of motion (36), i.e. ζ(t) = x0(t), then (53) can
be simplified to

ih̄
∂

∂t
ϕ(y, t)

=

(
− h̄2

2m
∂2

∂y2
+
mω2

0

2
y2 −L(x0 (t) , ẋ0 (t) , t)

)
ϕ(y, t) ,

(54)

where we have introduced the classical Lagrangian for the
driven harmonic oscillator

L(x0 (t) , ẋ0 (t) , t) =
m
2
ẋ0 (t)

2 − mω2
0

2
x0 (t)

2 − e0E(t)x0 (t)

(55)

as a short-hand notation. The latter only depends on t but not
on y. Therefore, it does not affect the spatial variation of the
wavefunction but only its phase. In the third step, another unit-
ary transformation

ϕ(y, t) =: ei
´ t
0 L(x0(t

′),ẋ0(t ′),t ′)dt ′/h̄ξ (y, t) (56)

thus reduces (54) to

ih̄
∂

∂t
ξ (y, t) =

(
− h̄2

2m
∂2

∂y2
+
mω2

0

2
y2
)
ξ (y, t) . (57)

This is the time-dependent Schrödinger equation of a simple
harmonic oscillator, whose stationary solutions are well
known and can be written as

ξn (y, t) = φn (y)e
−iEnt/h̄ (58)

in terms of the normalized eigenfunctions

φn (y) =
(mω0

π h̄

)1/4 1√
2nn!

Hn

(√
mω0

h̄
y

)
e−mω0y

2/(2h̄)

(59)

and the corresponding energy eigenvalues En = h̄ω0(n+ 1/2)
of the time-independent Hamiltonian, where n is a nonneg-
ative integer. The symbol Hn denotes the Hermite polyno-
mial of order n. Finally, by reverting the transformations (56),

(52), and (50), we obtain the desired solutions of the original
Schrödinger equation (49) of the driven harmonic oscillator

ψ(0)
n (x, t)

= φn (x− x0 (t))e
i
[
−Ent+m(x−x0(t))ẋ0(t)+

´ t
0
L(x0(t ′),ẋ0(t ′),t ′)dt ′

]
/h̄ .

(60)

The classical trajectory (38) and the external electric field (34)
are both known exactly. Therefore, it is straightforward to
evaluate the integral over the Lagrangian L(x0(t ′), ẋ0(t ′), t ′)
analytically, but this is in fact not necessary in the present con-
text, because the phase shift does not contribute to the physical
observables and cancels out in the subsequent steps. Besides
the canonical coherent states considered here, other solutions
of (57) with distinct physical properties and no classical ana-
logues, such as pulsating states [50], may also be derived. They
correspond to different initial conditions and will be ignored
in the following. As an example, the pulsating states are time
dependent because the width of the wave packet varies peri-
odically, but as it remains symmetric around the origin, there
is no observable polarization.

The quantities of central interest in this work are the
induced polarization and the associated susceptibilities. The
dipole moment P(t) =−Ne0⟨x(t)⟩ is proportional to the spa-
tial displacement of the electron charge, which is defined as the
expectation value of the position operator x. The zeroth-order
contribution

⟨x0 (t)⟩=
ˆ +∞

−∞
ψ(0)∗
n (x, t)xψ(0)

n (x, t) dx (61)

is obtained from the wavefunctions of the driven harmonic
oscillator, taking the full strength of the external electric field
but no anharmonic perturbation into account. By inserting the
previously derived solution (60) and substituting x= y+ x0(t),
this simplifies to

⟨x0 (t)⟩=
ˆ +∞

−∞
y |φn (y)|2 dy+ x0 (t)

ˆ +∞

−∞
|φn (y)|2 dy .

(62)

The first integral vanishes, because the integrand is an odd
function of y, while the second integral equals the norm of the
wavefunction and yields 1. As a consequence, the quantum-
mechanical expectation value coincides exactly with the solu-
tion of the classical equation of motion and hence with the
classical trajectory

⟨x0 (t)⟩= x0 (t) =
(
x̂0 (ω)e

−iωt+ x̂∗0 (ω)e
iωt
)
eγt (63)

derived in section 3.1, where the Fourier coefficient is given
by (39). Notably, it does not depend on the quantum number n
and is therefore identical for all eigenstates.
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3.2.2. First order: anharmonic perturbation. The terms of
first order in the parameters β2, β3 from the Schrödinger
equation (45) fulfill the relation(

ih̄
∂

∂t
−H(0) (x, t)

)
ψ(1)
n (x, t) = H(1) (x)ψ(0)

n (x, t) . (64)

The first-order wavefunction is obtained from time-dependent
perturbation theory as

ψ(1)
n (x, t)

=
1
ih̄

∑
n ′

ψ
(0)
n ′ (x, t)

ˆ ˆ +∞

−∞
ψ
(0)∗
n ′ (x ′, t)H(1) (x ′)

×ψ(0)
n (x ′, t) dx ′ dt , (65)

which exploits the fact that the eigenfunctions (60) of the har-
monic oscillator at a fixed time t, even in the presence of an
external driving force, form a complete orthonormal set that
satisfies the orthogonality condition

ˆ +∞

−∞
ψ(0)∗
n (x, t)ψ(0)

n ′ (x, t) dx

= ei(En−En ′ )t/h̄
ˆ +∞

−∞
φ∗
n (x− x0 (t))φn ′ (x− x0 (t)) dx

= δn,n ′ (66)

as well as the completeness relation∑
n

ψ(0)
n (x, t)ψ(0)∗

n (x ′, t)

= eim(x−x ′)ẋ0(t)
∑
n

φn (x− x0 (t))φ
∗
n (x

′ − x0 (t))

= δ (x− x ′) , (67)

where δn,n ′ denotes the Kronecker delta and δ(x− x ′) the
Dirac delta distribution. The corresponding first-order contri-
bution to the electron displacement, i.e. the expectation value
of the position operator, is given by

⟨x1 (t)⟩=
ˆ +∞

−∞
ψ(0)∗
n (x, t)xψ(1)

n (x, t) dx+ c.c. (68)

After inserting (65), this can be rearranged to

⟨x1 (t)⟩

=
1
ih̄

∑
n ′ ̸=n

ˆ +∞

−∞
ψ(0)∗
n (x, t)xψ(0)

n ′ (x, t) dx

×
ˆ ˆ +∞

−∞
ψ
(0)∗
n ′ (x ′, t)H(1) (x ′)ψ(0)

n (x ′, t) dx ′ dt+ c.c.

(69)

The term n ′ = nmay be omitted, because all integrals are real
in this case. Together with the prefactor 1/(ih̄), this makes for
a purely imaginary contribution to the sum, which is exactly
canceled by its complex conjugate. Next, we insert the previ-
ously derived solution (60) for the wavefunctions of the driven
harmonic oscillator. After the substitutions x= y+ x0(t) and
x ′ = y ′ + x0(t), we thus obtain

⟨x1 (t)⟩

=
1
ih̄

∑
n ′ ̸=n

ei(n−n ′)ω0t
ˆ +∞

−∞
φn (y)(y+ x0 (t))φn ′ (y) dy

×
ˆ

ei(n
′−n)ω0t

ˆ +∞

−∞
φn ′ (y ′)H(1) (y ′ + x0 (t))

×φn (y
′) dy ′ dt+ c.c. (70)

In order to evaluate the integrals, we define the matrix
elements

Ωnn ′ ( j) =
ˆ +∞

−∞
φn (y)y

jφn ′ (y) dy , (71)

which can be calculated from a recursion formula as shown in
the appendix, where the relevant values for j ⩽ 4 are also lis-
ted. The integral over y in (70) equals Ωnn ′(1)+ x0(t)Ωnn ′(0)
and yields

ˆ +∞

−∞
φn (y)(y+ x0 (t))φn ′ (y) dy

=

(
h̄

2mω0

)1/2(√
n+ 1δn+1,n ′ +

√
nδn−1,n ′

)
+ x0 (t)δn,n ′ .

(72)

As n ′ = n is excluded in (70), only the terms with n ′ = n+ 1
or n ′ = n− 1 contribute to the sum, which leaves

⟨x1 (t)⟩=
1
ih̄

(
h̄

2mω0

)1/2 [
e−iω0t

√
n+ 1

ˆ
eiω0t
ˆ +∞

−∞
φn+1 (y

′)H(1) (y ′ + x0 (t))φn (y
′) dy ′ dt

+ eiω0t
√
n
ˆ

e−iω0t
ˆ +∞

−∞
φn−1 (y

′)H(1) (y ′ + x0 (t))φn (y
′) dy ′ dt

]
+ c.c. (73)

8
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The integral over y′ can be calculated in the sameway, because
the Hamiltonian H(1)(y ′ + x0(t)) is a polynomial of degree 4
in y′. Using the formulas for Ωn±1,n( j) listed in the appendix,
the relevant contributions are

ˆ +∞

−∞
φn+1 (y

′)(y ′ + x0 (t))
3
φn (y

′) dy ′

=

(
h̄

2mω0

)3/2

3(n+ 1)3/2

+

(
h̄

2mω0

)1/2

3(n+ 1)1/2 x0 (t)
2 (74)

ˆ +∞

−∞
φn−1 (y

′)(y ′ + x0 (t))
3
φn (y

′) dy ′

=

(
h̄

2mω0

)3/2

3n3/2 +

(
h̄

2mω0

)1/2

3n1/2x0 (t)
2 (75)

ˆ +∞

−∞
φn+1 (y

′)(y ′ + x0 (t))
4
φn (y

′) dy ′

=

(
h̄

2mω0

)3/2

12(n+ 1)3/2 x0 (t)

+

(
h̄

2mω0

)1/2

4(n+ 1)1/2 x0 (t)
3 (76)

ˆ +∞

−∞
φn−1 (y

′)(y ′ + x0 (t))
4
φn (y

′) dy ′

=

(
h̄

2mω0

)3/2

12n3/2x0 (t)+

(
h̄

2mω0

)1/2

4n1/2x0 (t)
3
.

(77)

Inserting these expressions into (73) yields

⟨x1 (t)⟩=−mβ2
h̄

[(
h̄

2mω0

)2 [
(n+ 1)2O+

0 (t)− n2O−
0 (t)

]
+

(
h̄

2mω0

)[
(n+ 1)O+

2 (t)− nO−
2 (t)

]]

− mβ3
h̄

[(
h̄

2mω0

)2 [
3(n+ 1)2O+

1 (t)− 3n2O−
1 (t)

]
+

(
h̄

2mω0

)[
(n+ 1)O+

3 (t)− nO−
3 (t)

]]
+ c.c. ,

(78)

where we have introduced the symbol

O±
j (t) =±ie∓iω0t

ˆ
x0 (t)

j e±iω0t dt (79)

as a short-hand notation for the integrals over t. By exploit-
ing the fact that O+

j (t) and O
−
j (t) are, by definition, complex

conjugates of each other, this can be simplified to

⟨x1 (t)⟩=−mβ2
h̄

[(
h̄

2mω0

)2

(2n+ 1)
[
O+

0 (t)+O−
0 (t)

]
+

(
h̄

2mω0

)[
O+

2 (t)+O−
2 (t)

]]

− mβ3
h̄

[(
h̄

2mω0

)2

3(2n+ 1)
[
O+

1 (t)+O−
1 (t)

]
+

(
h̄

2mω0

)[
O+

3 (t)+O−
3 (t)

]]
, (80)

which depends only on the real-valued sums O+
j (t)+O−

j (t).
As the trajectory x0(t) of the classical driven harmonic oscil-
lator is known, the integrals can be evaluated analytically;
the details of the derivation and explicit expressions for j ⩽ 3
are again listed in the appendix. When these are inserted, we
obtain the final result

⟨x1 (t)⟩− ⟨x(0)1 ⟩− ⟨x(1)1 (t)⟩

=−β2

(
x̂0 (ω)

2

ω2
0 − (2ω+ i2γ)2

e−i2ωt+
|x̂0 (ω) |2

ω2
0 +(2γ)2

)
e2γt

−β3

(
x̂0 (ω)

3

ω2
0 − (3ω+ i3γ)2

e−i3ωt+
3x̂0 (ω) |x̂0 (ω) |2

ω2
0 − (ω+ i3γ)2

e−iωt

)
× e3γt+ c.c. (81)

Compared to the classical solution (40), the quantum-
mechanical expectation value contains two additional terms,
a constant displacement

⟨x(0)1 ⟩=− h̄β2
4mω3

0

(2n+ 1)+ c.c. (82)

that is independent of the external electric field and a first-
order correction to the linear response

⟨x(1)1 (t)⟩

=− 3h̄β3
2mω0

(2n+ 1)

(
x̂0 (ω)

ω2
0 − (ω+ iγ)2

e−iωt

)
eγt+ c.c. ,

(83)

both of which depend on the quantum number n through the
common factor 2n+ 1. The remaining terms on the right-hand
side of (81), which are of second and third order in the external
electric field, coincide with the classical trajectory x1(t) and do
not depend on n.

3.3. Miller’s rule

For the driven harmonic oscillator, the quantum-mechanical
expectation value ⟨x0(t)⟩ is identical to the classical traject-
ory x0(t), but this is no longer true if the potential contains
an anharmonic part, as the first-order correction ⟨x1(t)⟩ to the
quantum-mechanical solution differs from that of the clas-
sical trajectory x1(t). The origin of the two additional terms

9
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Figure 1. Potential (solid lines) and associated ground-state
wavefunction (filled curves) for a harmonic (blue) and a weakly
anharmonic (red) oscillator. The quantum-mechanical expectation
values of the position operator are marked by vertical lines. In the
harmonic case, it coincides with the classical equilibrium position,
indicated by the black ball, but the anharmonic perturbation causes a
finite deviation ⟨x(0)1 ⟩ even without external electric fields.

in (81) can be easily understood, as illustrated in figure 1
for a weakly anharmonic potential with the parameter values
V(x) = 1

2x
2 + 1

10x
3 + 1

100x
4 in units where lengths are meas-

ured in multiples of
√
h̄/(mω0) and energies in multiples of

h̄ω0. In the absence of external driving forces, the equilibrium
position of a classical particle is at x= 0 for the harmonic
potential 1

2x
2 as well as the full anharmonic potential V(x),

because V(0) = 0 is the global minimum in both cases. On
the other hand, quantum-mechanical particles possess a finite
zero-point energy of E0 = 1/2 in these units, and the ground-
state wavefunction extends into the barriers on either side. In
the harmonic case, the probability density is an even function
of x, like the potential itself, so that the expectation value of the
position operator is x= 0 by symmetry and equals the classical
equilibrium position. If anharmonic terms are included, the
distribution becomes asymmetric, however, and the centroid
shifts towards the flatter slope. As a consequence, the expect-
ation value is offset from the classical equilibrium position as
described by the constant ⟨x(0)1 ⟩. If the external electric field
is turned on, then the modified shape of the potential away
from the origin also influences the dynamic behavior of delo-
calized quantum-mechanical particles more strongly than that
of classical particles, whose motion is confined to the vicinity
of x= 0, leading to the additional term ⟨x(1)1 (t)⟩ that depends
on the field strength. As the wavefunction becomes more delo-
calized and extends further into the barriers for higher ener-
gies, the magnitude of these terms increases with the quantum
number n.

Although the dynamics of the classical and quantum-
mechanical particles deviate, they are still closely related.
In order to explore the implications for Miller’s rule, we
now sort the results, which were grouped by orders of
the anharmonicity parameters β2 and β3 so far, according
to powers of the electric field. The zeroth-order compon-
ent ⟨x0(t)⟩= x0(t) is linear in Ê(ω), whereas the first-order

component ⟨x1(t)⟩= x1(t)+ ⟨x(0)1 ⟩+ ⟨x(1)1 (t)⟩ contains quad-
ratic and cubic terms and, only in the quantum-mechanical
case, additional constant and linear contributions ⟨x(0)1 ⟩ and

⟨x(1)1 (t)⟩, respectively. From the linear displacement ⟨x0(t)⟩+
⟨x(1)1 (t)⟩= x0(t)+O(β3), we thus obtain the Fourier coeffi-
cients of the induced polarization

P̂(1) (ω) =−Ne0x̂0 (ω)+O(β3)

=
Ne20
m

(
1

ω2
0 − (ω+ iγ)2

)
Ê(ω)+O(β3) , (84)

where the deviation between the response of classical and the
quantum-mechanical particles affects only the terms of first
order in β3. In both cases, the linear susceptibility is hence
given by

χ(1) (ω+ iγ) =
Ne20
ε0m

(
1

ω2
0 − (ω+ iγ)2

)
+O(β3) . (85)

From now on, to keep track of the adiabatic switching para-
meter γ that determines the linewidth of the Lorentzian func-
tions, we write it explicitly in the argument of the first-order
susceptibility, which may thus be interpreted as a function of
a complex frequency variable. Likewise, the relevant compon-
ent for second-harmonic generation is

P̂(2) (ω) = β2Ne0
x̂0 (ω)

2

ω2
0 − (2ω+ i2γ)2

= β2
Ne30
m2

Ê0 (ω)
2[

ω2
0 − (2ω+ i2γ)2

][
ω2
0 − (ω+ iγ)2

]2 .
(86)

According to the definition, this entails a nonlinear
susceptibility

χ(2) (2ω) = β2
Ne30
ε0m2

1[
ω2
0 − (2ω+ i2γ)2

][
ω2
0 − (ω+ iγ)2

]2 .
(87)

To keep the notation simple, we omit the parameter γ in the
argument of the nonlinear susceptibility, because there is no
ambiguity in this case. By comparing the formulas above, one
sees that the ratio

δ(2) (2ω) =
χ(2) (2ω)

χ(1) (2ω+ i2γ)χ(1) (ω+ iγ)2
= β2

ε20m

N2e30
(88)

is frequency independent if terms of second order in β2 and β3

are ignored, as done throughout this work. Despite the differ-
ent dynamics, we thus find that the classical and the quantum-
mechanical system fulfill Miller’s rule and, moreover, that its
mathematical formulation is indeed identical in both cases up
to first order in the anharmonicity.

The other Fourier coefficients of the polarization can be
treated in the same way. Ultimately, this allows us to write all

10
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nonzero components of the nonlinear susceptibilities in terms
of the linear susceptibilities as

χ(2) (0)

= β2
m
e0

(
− ε0
Ne0

)2

χ(1) (0+ i2γ) |χ(1) (ω+ iγ) |2 (89)

χ(2) (2ω)

= β2
m
e0

(
− ε0
Ne0

)2

χ(1) (2ω+ i2γ)χ(1) (ω+ iγ)2 (90)

χ(3) (ω)

= β3
m
e0

(
− ε0
Ne0

)3

χ(1) (ω+ i3γ)

×χ(1) (ω+ iγ) |χ(1) (ω+ iγ) |2 (91)

χ(3) (3ω)

= β3
m
e0

(
− ε0
Ne0

)3

χ(1) (3ω+ i3γ)χ(1) (ω+ iγ)3 , (92)

where terms of second or higher order in the anharmonicity
parameters are again ignored. The rigorous derivation of these
formulas, and the proof that they apply equally to the clas-
sical and the quantum-mechanical anharmonic oscillator, are
the main results of this paper.

3.4. Numerical example

The mathematical relations between the linear and nonlinear
susceptibilities derived in the previous section are very sim-
ilar but not identical to those for the classical Lorentz model in
section 2.3 due to the differing roles of the adiabatic switching
parameter γ and the relaxation time τ . In particular, Miller’s
rule for the Lorentz model (31) relates the second-order sus-
ceptibility χ(2)(2ω) to a product of three first-order suscept-
ibilities, which are evaluated at different real frequencies ω
and 2ω but with the same value of τ . In contrast, the three
first-order susceptibilities in the equivalent formula (88) for
our model feature distinct switching parameters γ and 2γ. To
avoid any spurious errors, it is important to recognize this dis-
crepancy and to apply Miller’s rule correctly in practical situ-
ations. In particular, ab initio electronic-structure calculations
of optical response functions for solids and their surfaces typ-
ically assume adiabatically switched-on fields [48]. Although
the distinction between γ and 2γ might at first appear irrelev-
ant, since the theoretical concept of adiabatic switching usu-
ally implies the notional limit γ→ 0 at the end of the calcula-
tion, this is not true in actual numerical implementations. On
the contrary, most material-specific simulations deliberately
use a finite, not too small value of γ in order to broaden the
spectral peaks and smoothen the generated functions, which
reduces the computational cost because fewer data points are
needed. Under these circumstances, a proper treatment of the
broadening parameters in Miller’s rule is clearly mandatory.

In the following, we illustrate this point numerically, tak-
ing the weakly anharmonic potential displayed in figure 1 as
an example. The upper panel of figure 2 shows the real and
imaginary part of the first-order susceptibility χ(1) in units of

Figure 2. Linear susceptibility χ(1), nonlinear susceptibility χ(2)

for second-harmonic generation, and Miller’s δ(2) for the
anharmonic potential displayed in figure 1. Miller’s rule is only
fulfilled exactly if χ(2)(2ω) is calculated from the product
χ(1)(2ω+ i2γ)χ(1)(ω+ iγ)2 of first-order susceptibilities evaluated
at different frequencies and broadening parameters, corresponding
to a combination of points on the blue and red curves in the upper
panel. If the same broadening γ is used throughout (blue curves),
then δ(2) has a spurious artificial frequency dependence.

Ne20/(ε0m) as a function of the real frequency ω, measured
in multiples of ω0, for two different broadening parameters γ
and 2γ; in this example, we choose γ = ω0/4. In the central
panel, we display the second-order susceptibility in units of
β2Ne30/(ε0m

2). According to (90), the exact solution χ(2)(2ω)
is proportional to the product χ(1)(2ω+ i2γ)χ(1)(ω+ iγ)2.
The construction of each data point thus requires a value from
the blue curve and another from the red curve in the upper
panel, which correspond to a broadening of γ and 2γ, respect-
ively. Under these conditions, Miller’s rule in the formulation
of (88) is satisfied exactly, and δ(2)(2ω) is indeed a constant,
frequency-independent function, as indicated in the bottom
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panel of figure 2. In contrast, if the import of the finite value
of γ is ignored and χ(1)(ω+ iγ) is merely treated as a numer-
ical approximation for χ(1)(ω) in the formulas (28) and (31)
derived for the classical Lorentz model, then one would take
all input data just from the blue curves in the upper panel of
figure 2. In this scenario, the product χ(1)(2ω+ iγ)χ(1)(ω+
iγ)2 still resembles the exact χ(2)(2ω), but deviations in the
peak heights, peak positions, and lineshapes are clearly dis-
cernible. Furthermore, the ratio between the two, displayed as
blue lines in the bottom panel, exhibits a substantial frequency
variation, amounting to a dip by 50% at ω = ω0/2, and thereby
falsely suggests a violation of Miller’s rule that is really just
an artifact of the incorrect treatment of the finite broadening.

4. Conclusion

Miller’s rule provides an empirical relation between the non-
linear and linear optical coefficients of materials, which allows
a quantitative estimate of the former based on knowledge of
the latter. Although it is often used to analyze data obtained
from spectroscopic measurements or quantitative theoretical
simulations, its formal justification is mostly based on a math-
ematically straightforward derivation for the classical Lorentz
model. In particular, there was so far no actual proof that
Miller’s rule also applies to quantum-mechanical systems, as
previous studies provided few details and failed to incorpor-
ate damping, which is essential to obtain a complex dielec-
tric function and to describe optical absorption. The principal
obstacle was that the Lorentz model includes damping by
means of a velocity-dependent friction force, a distinctly clas-
sical concept with no quantum-mechanical analogue.

In this work, we set out to provide a unified proof ofMiller’s
rule for the classical and the quantum-mechanical anharmonic
oscillator. Compared to the Lorentz model, a key aspect of our
approachwas to replace the velocity-dependent damping by an
adiabatic switch-on of the external electric field, a technique
that is well established in electronic-structure calculations and
routinely used to compute complex dielectric functions in
ab initio simulations of the optical response. This modifica-
tion allowed us to treat the classical and quantum-mechanical
systems on the same footing, using identical potentials and
external fields. Both were solved analytically in an analogous
fashion, where the time-varying electric field is fully included
in a nonperturbative way, while the anharmonicity is treated up
to first order in time-dependent perturbation theory. Although
the dynamics of the two systems, and hence the induced polar-
izations, deviate due to the finite zero-point energy in the
quantum-mechanical framework, we found that the mathem-
atical relation between the components of the nonlinear and
the linear susceptibility is nevertheless identical in both cases
up to terms of first order in the anharmonicity. Thus, the proof
of Miller’s rule is generalized from weakly anharmonic clas-
sical oscillators to equivalent quantum-mechanical systems,
providing a better foundation and justification for its applic-
ations to real materials.

The most immediate consequence of the proper treatment
of the adiabatic switch-on in our model is that the derived

formulas (89)–(92) for Miller’s rule, contrary to those for
the friction-damped Lorentz model, feature products of first-
order susceptibilities that are not only evaluated at distinct real
frequencies but also with different switch-on parameters. By
means of a numerical example, we demonstrated in section 3.4
that a proper implementation is indeed very important, as using
the same parameter value in all factors may incur substan-
tial errors in the peak heights, peak positions, and lineshapes
that falsely suggest a violation of Miller’s rule but are in fact
mere artifacts. Applications of Miller’s rule in the context of
ab initio optical-response calculations [34, 47], where adiabat-
ically switched-on fields are ubiquitous and finite broadening
parameters are routinely used to smoothen the spectral func-
tions and reduce the numerical cost, should pay heed to this
point in particular and use appropriate input data with varying
broadening parameters in order to ensure correct quantitative
predictions.

Finally, although the formal scope of the present proof is
limited to weakly anharmonic oscillators in one dimension,
the techniques employed in our derivation may be adapted for
other quantum-mechanical systems and thus open a pathway
for analyzing the validity of Miller’s rule in more general situ-
ations. With a view to realistic nonlinear optical materials, the
most relevant factors to be considered in future studies are
the dimensionality, the shape of the potential, and the mutual
Coulomb interaction between the electrons.

Data availability statement

The calculated data used to support the findings of this study
are included within the article.

Appendix

Matrix elements Ωn,n ′( j)

The matrix elements Ωn,n ′( j) defined in (71) can written as

Ωn,n ′ ( j)

=

(
h̄

mω0

)j/2 1√
2n+n ′n!n ′!π

ˆ +∞

−∞
Hn (z)z

jHn ′ (z)e−z2 dz

(93)

by inserting the time-independent eigenfunctions of the har-
monic oscillator (59) and substituting z=

√
mω0/h̄ y. The res-

ult for j= 0 follows directly from the orthogonality of the
Hermite polynomials

Ωn,n ′ (0) =
1√

2n+n ′n!n ′!π

ˆ +∞

−∞
Hn (z)Hn ′ (z)e−z2 dz

= δn.n ′. (94)

For j> 0, the identity

zHn ′ (z) =
1
2
Hn ′+1 (z)+ n ′Hn ′−1 (z) (95)
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leads to the recursion formula

Ωn,n ′ ( j) =

(
h̄

2mω0

)1/2 (√
n ′ + 1Ωn,n ′+1 ( j− 1)

+
√
n ′Ωn,n ′−1 ( j− 1)

)
, (96)

which can be iterated as necessary. The relevant matrix ele-
ments required in section 3.2.2 are

Ωn,n ′ (1) =

(
h̄

2mω0

)1/2(√
n+ 1δn+1,n ′ +

√
nδn−1,n ′

)
(97)

Ωn,n ′ (2) =

(
h̄

2mω0

)1(√
(n+ 1)(n+ 2)δn+2,n ′

+(2n+ 1)δn,n ′ +
√
n(n− 1)δn−2,n ′

)
(98)

Ωn,n ′ (3)

=

(
h̄

2mω0

)3/2
(√

(n+ 3)(n+ 2)(n+ 1)δn+3,n ′

+ 3
√
(n+ 1)3 δn+1,n ′

+ 3
√
n3 δn−1,n ′ +

√
n(n− 1)(n− 2)δn−3,n ′

)
(99)

Ωn,n ′ (4)

=

(
h̄

2mω0

)2
(√

(n+ 4)(n+ 3)(n+ 2)(n+ 1)δn+4,n ′

+ 2(2n+ 3)
√
(n+ 2)(n+ 1)δn+2,n ′

+ 3(2n(n+ 1)+ 1)δn,n ′ + 2(2n− 1)
√
n(n− 1)δn−2,n ′

+
√
n(n− 1)(n− 2)(n− 3)δn−4,n ′

)
. (100)

Integrals O±
j (t)

The integrals O+
j and O−

j defined in (79) are complex con-
jugates of each other. With the Fourier representation of
the classical trajectory of the harmonic oscillator x0(t) =
(x̂0(ω)e−iωt+ x̂∗0(ω)e

iωt)eγt, they can be written as

O±
j (t) =±i

j∑
k=0

(
j
k

)
x̂0 (ω)

k x̂∗0 (ω)
j−k e∓iω0t

×
ˆ

ei[( j−2k)ω−ijγ±ω0]t dt . (101)

The integration is elementary and yields

O±
j (t) =±

j∑
k=0

(
j
k

)
x̂0 (ω)

k x̂∗0 (ω)
j−k

( j − 2k)ω− ijγ±ω0
ei( j−2k)ωtejγt .

(102)

The explicit results for the functions that appear in this work
are

O±
0 (t) =

1
ω0

(103)

O±
1 (t) =

(
x̂0 (ω)

ω0 ∓ (ω+ iγ)
e−iωt+

x̂∗0 (ω)
ω0 ± (ω− iγ)

eiωt
)
eγt (104)

O±
2 (t) =

(
x̂0 (ω)

2

ω0 ∓ (2ω+ i2γ)
e−i2ωt+

2|x̂0 (ω) |2

ω0 ∓ i2γ

+
x̂∗0 (ω)

2

ω0 ± (2ω− i2γ)
ei2ωt

)
e2γt (105)

O±
3 (t)=

(
x̂0 (ω)

3

ω0 ∓ (3ω+ i3γ)
e−i3ωt+

3x̂0 (ω) |x̂0 (ω) |2

ω0 ∓ (ω+ i3γ)
e−iωt

+
3x̂∗0 (ω) |x̂0 (ω) |

2

ω0 ± (ω− i3γ)
eiωt+

x̂∗0 (ω)
3

ω0 ± (3ω− i3γ)
ei3ωt

)
e3γt .

(106)

The evaluation of (80) in fact only requires the real-valued
sums O+

j +O−
j , which are given by

O+
0 +O−

0 =
1
ω0

+ c.c. (107)

O+
1 +O−

1 = 2ω0

(
x̂0 (ω)

ω2
0 − (ω+ iγ)2

e−iωt

)
eγt+ c.c. (108)

O+
2 +O−

2 = 2ω0

(
x̂0 (ω)

2

ω2
0 − (2ω+ i2γ)2

e−i2ωt

+
|x̂0 (ω) |2

ω2
0 +(2γ)2

)
e2γt+ c.c. (109)

O+
3 +O−

3 = 2ω0

(
x̂0 (ω)

3

ω2
0 − (3ω+ i3γ)2

e−i3ωt

+
3x̂0 (ω) |x̂0 (ω) |2

ω2
0 − (ω+ i3γ)2

e−iωt

)
e3γt+ c.c. (110)
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